How to detect the Granger-causal flow direction in the presence of additive noise?
نویسندگان
چکیده
Granger-causality metrics have become increasingly popular tools to identify directed interactions between brain areas. However, it is known that additive noise can strongly affect Granger-causality metrics, which can lead to spurious conclusions about neuronal interactions. To solve this problem, previous studies have proposed the detection of Granger-causal directionality, i.e. the dominant Granger-causal flow, using either the slope of the coherency (Phase Slope Index; PSI), or by comparing Granger-causality values between original and time-reversed signals (reversed Granger testing). We show that for ensembles of vector autoregressive (VAR) models encompassing bidirectionally coupled sources, these alternative methods do not correctly measure Granger-causal directionality for a substantial fraction of VAR models, even in the absence of noise. We then demonstrate that uncorrelated noise has fundamentally different effects on directed connectivity metrics than linearly mixed noise, where the latter may result as a consequence of electric volume conduction. Uncorrelated noise only weakly affects the detection of Granger-causal directionality, whereas linearly mixed noise causes a large fraction of false positives for standard Granger-causality metrics and PSI, but not for reversed Granger testing. We further show that we can reliably identify cases where linearly mixed noise causes a large fraction of false positives by examining the magnitude of the instantaneous influence coefficient in a structural VAR model. By rejecting cases with strong instantaneous influence, we obtain an improved detection of Granger-causal flow between neuronal sources in the presence of additive noise. These techniques are applicable to real data, which we demonstrate using actual area V1 and area V4 LFP data, recorded from the awake monkey performing a visual attention task.
منابع مشابه
Acoustic correlated sources direction finding in the presence of unknown spatial correlation noise
In this paper, a new method is proposed for DOA estimation of correlated acoustic signals, in the presence of unknown spatial correlation noise. By generating a matrix from the signal subspace with the Hankel-SVD method, the correlated resource information is extracted from each eigen-vector. Then a joint-diagonalization structure is constructed of the signal subspace and basis it, independent...
متن کاملCapacity Bounds and High-SNR Capacity of the Additive Exponential Noise Channel With Additive Exponential Interference
Communication in the presence of a priori known interference at the encoder has gained great interest because of its many practical applications. In this paper, additive exponential noise channel with additive exponential interference (AENC-AEI) known non-causally at the transmitter is introduced as a new variant of such communication scenarios. First, it is shown that the additive Gaussian ch...
متن کاملOn the Identifiability and Estimation of Functional Causal Models in the Presence of Outcome-Dependent Selection
We study the identifiability and estimation of functional causal models under selection bias, with a focus on the situation where the selection depends solely on the e↵ect variable, which is known as outcome-dependent selection. We address two questions of identifiability: the identifiability of the causal direction between two variables in the presence of selection bias, and, given the causal ...
متن کاملOn The Relationship between Energy Consumption and Real GDP on Iran: An Application of VEC Mode
This paper examines the causal relationship between energy use and real GDP for the period 1967-2002 in Iran. The results of Phillips- Perron test indicate that the real GDP and the four categories of energy, i.e. coal, oil, gas, and hydroelectric energy are integrated of order one. Besides, the Johansen — Juselius maximum likelihood co- integration tests imply the existence of Granger causalit...
متن کاملTelling cause from effect in deterministic linear dynamical systems
Inferring a cause from its effect using observed time series data is a major challenge in naturaland social sciences. Assuming the effect is generated by the cause trough a linear system,we propose a new approach based on the hypothesis that nature chooses the “cause” and the“mechanism that generates the effect from the cause” independent of each other. We thereforepostulate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 108 شماره
صفحات -
تاریخ انتشار 2015